
Dual equivalence in models with higher-order derivatives

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 9943

(http://iopscience.iop.org/0305-4470/36/38/311)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/38
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 9943–9959 PII: S0305-4470(03)62937-9

Dual equivalence in models with higher-order
derivatives

D Bazeia1, R Menezes1, J R Nascimento1, R F Ribeiro1 and C Wotzasek2

1 Instituto de Fı́sica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ,
Brazil
2 Departamento de Fı́sica, Universidade Federal da Paraı́ba, 58051-970 João Pessoa, PB, Brazil

Received 30 April 2003, in final form 14 July 2003
Published 10 September 2003
Online at stacks.iop.org/JPhysA/36/9943

Abstract
We introduce a class of higher-order derivative models in (2, 1) spacetime
dimensions. The models are described by a vector field, and contain a Proca-
like mass term which prevents gauge invariance. We use the gauge embedding
procedure to generate another class of higher-order derivative models, gauge-
invariant and dual to the former class. We show that the results are valid
in arbitrary (d, 1) spacetime dimensions when one discards the Chern–Simons
and Chern–Simons-like terms. We also investigate duality at the quantum level,
and we show that it is preserved in the quantum scenario. Other results include
investigations concerning the gauge embedding approach when the vector field
couples with fermionic matter, and when one adds nonlinearity.

PACS numbers: 11.10.−z, 11.10.Kk, 11.15.−q

1. Introduction

It is hardly necessary to recall the remarkable and powerful properties of the duality mapping
as an analytical tool in field theory as well as in string theory [1]. On the other hand, the
interest in the study of theories involving higher-order derivatives is by now well appreciated
and remains intense. Within the context of Maxwell theory, generalizations involving higher-
order derivatives can be found in [2–4]. More recently, in [5, 6] one finds generalizations that
involve both the Maxwell and Chern–Simons (CS) terms [7–9]. In the present work we study
duality symmetry in extended theories, which contain higher-order derivatives involving both
the Maxwell and CS terms.

The interest in the subject has been recently fuelled by several motivations, in particular by
issues related to string theory. As one knows, string theories engender the feature of containing
interactions that may involve an infinite number of spacetime derivatives, and that may lead
to standard field theory in the low energy limit. Thus, higher-order derivative contributions
would certainly appear when one consider next-to-leading orders in the energy. Based upon
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such interesting possibilities, there is a renewed interest in investigating higher-order derivative
models, including the case of tachyons [10–17]. Other lines of investigations can be found
for instance in [18, 19], and also in gravity, where higher orders in the scalar curvature R
are considered in the so-called nonlinear gravity theories—see, for instance, the recent works
[20, 21] and references therein.

The presence of higher-order derivatives to control the behaviour of systems is not peculiar
to string and field theories. It may also appear in condensed matter, and can be important
to describe higher-order phase transitions [22], such as for instance the case of the fourth-
order transition in superconducting Ba0.6K0.4BiO3, which is described in [23]. Furthermore,
sometimes one has to include higher-order derivatives of the order parameter to correctly
describe pattern formation in chemical reactions, and in other branches of nonlinear science
[24, 25].

We investigate the subject dealing with issues that appear very naturally in field theory.
Specifically, we examine the duality mapping of higher-derivative extensions of self-dual (SD)
and Maxwell–Chern–Simons (MCS) theories, including the presence of fermionic matter. We
work in the (2, 1)-dimensional spacetime, with ε012 = ε012 = 1; our metric tensor has signature
(+,−,−) and we use natural units. We start in the next section 2, where we examine the
dual mapping of the MCS–Proca model with the MCS–Podolsky theory. Our methodology
makes use of the gauge embedding procedure, an approach which has been shown to work
very efficiently to unveil the dual partner of a specific model [26–30]. The investigation of the
MCS–Proca model is new, and we use it to set the stage to generalize the model to higher-order
derivatives. We develop this generalization in section 3, where we introduce the main model,
which is defined in terms of n = 1, 2, . . . , and in section 4, where we consider the case
n → ∞. We show in section 3 that if one discards the CS and CS-like terms, the results are
then valid in arbitrary (d, 1) spacetime dimensions. We also show in section 4 that the duality
is preserved at the quantum level. In section 5 we examine the presence of matter, coupling
fermions to the system. In section 6 we change the model introduced in section 3 to include
the presence of nonlinearity. We end our work in section 7, where we present our comments
and conclusions.

2. Duality transformation in the MCS–Proca model

It is well known that both the SD and the MCS models are dual representations of the same
dynamics: they carry one massive degree of freedom of definite helicity determined by the
relative sign of the CS term. However, the SD representation hides a gauge symmetry, which
is explicit in the MCS model. This is easily seen when one establishes the correspondence
fµ → Fµ ∼ εµνρ∂

νAρ , which maps the SD field fµ into the dual of the basic field Aµ of the
MCS model. We note that in the above dual mapping, one relates a gauge non-invariant model
with an equivalent, gauge invariant theory. In this process, however, the non-gauge field is
identified with a special form containing the derivative of the gauge field of the dual model.
The identification of this mechanism is crucial for the generalizations that we will implement
below.

In this section we elaborate on a prototype of the study we intend develop in this paper. We
discuss the theoretical motivations for studying higher derivatives dualities, present a physical
scenario for the applications of the ideas elaborated and the quantum implications.

In the past, there have appeared several different ways of extending electrodynamics,
trying to smooth infrared or ultraviolet singularities that appear at large or short distances. One
is the Born–Infeld [2] type of generalization, and others include the generalizations introduced
by Proca [3] and by Podolsky [4]. The Born–Infeld approach involves nonlinear extension,
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which will be considered in section 6. The Proca model involves the addition of a mass term for
the vector field, which was introduced to smooth infrared singularities. The Podolsky model
involves higher-order derivatives and was introduced to smooth ultraviolet singularities. Thus,
the Proca and Podolsky models deal with dual aspects of the electromagnetic interaction, and
so they may be connected by some duality procedure.

The dual aspects of electrodynamics that appear in the Proca and Podolsky models
constitute the central subject of the present section. This duality is also of importance in the
extension of the bosonization programme from D = 2 to higher dimensions. The mechanisms
of the 3D bosonization in particular are quite dependent on the duality results involving the
presence of the Chern–Simons term. Besides providing us with the proper scenario for the
applications of our ideas, bosonization will also be crucial for the interpretation of the new
parameters in the Podolsky extension.

2.1. The duality procedure

In order to exemplify the general procedure of duality, we consider the more general model

L = m2

2
AµAµ − a

4
FµνFµν − 1

2
mεµνλA

µ∂νAλ (1)

where m is the mass parameter. We have introduced the real and dimensionless parameter a
in order to obtain the SD model for a = 0, or the MCS–Proca model for a = 1.

The equation of motion involves second-order derivatives, and the model is supposedly
dual to the generalized MCS–Podolsky theory. To verify this assumption we follow the gauge
embedding procedure [26–30] to construct its dual equivalent model. Firstly, we compute the
Euler vector associated with the MCS–Proca theory. We get

Kµ = m2Aµ − mεµνλ∂
νAλ + a∂νFνµ. (2)

The first iteration leads to

L1 = L0 − KµBµ (3)

where L0 is identified with the MCS–Proca Lagrangian given by equation (1). Also, Bµ is an
auxiliary field, which varies according to

δBµ = δAµ = ∂µ�. (4)

This choice makes the non-invariant term in L0 cancel with the term KµδBµ. Therefore

δL1 = −BµδKµ = −m2

2
δ(B2). (5)

Thus, we can write the gauge invariant second-iterated Lagrangian

L2 = L0 − KµBµ +
m2

2
B2. (6)

This ends the iteration process, and we can eliminate the auxiliary field to obtain the dual
model

LD = L0 − K2

2m2
(7)

or better

LD = a − 1

4
FµνFµν +

1

2
mεµνλA

µ∂νAλ − a2

2m2
∂µFµν∂λFλν +

a

m
εµνλ∂νAλ∂

ρFρµ. (8)

This is the generalized MCS–Podolsky model—see [4–6] for further information on this and
other related models. We recall that the Podolsky model was introduced in order to smooth
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ultraviolet singularities. In this sense, we note that our approach for duality is working
standardly, since we are linking infrared and ultraviolet problems, in MCS–Proca and MCS–
Podolsky models.

In the above investigation, if a = 0 the MCS–Proca model in (1) becomes the standard
SD model; in this case, in the generalized MCS–Podolsky model (8) one kills the Podolsky
terms, and we are led back to the MCS model. On the other hand if a = 1 we get to an
extended CS–Podolsky model.

It seems important, at this juncture, to establish the scenario at which the parameter
a becomes a physical quantity. This is done next where we show that action (8) for the
generalized MCS–Podolsky model is the low energy effective action for a self-interaction
fermionic model. To set the problem in a proper perspective, we review shortly the bosonization
procedure.

2.2. Physical interpretation

It is well known by now that the bosonization in D = 3 maps a massive scalar particle
coupled to a Chern–Simons gauge field into a massive Dirac fermion for a special value of the
Chern–Simons coupling. This is a relevant issue in the context of transmutation of spin and
statistics with interesting applications to problems both in quantum field theory and condensed
matter physics. This boson–fermion transmutation is a property which holds only at very long
distances, namely at scales long compared with the Compton wavelength of the particle. Thus
these results hold to the lowest order in an expansion in powers of the inverse mass of the
particle.

The equivalence of the three-dimensional effective electromagnetic action of the CP1

model with a charged massive fermion to the lowest order in inverse (fermion) mass has been
proposed by Deser and Redlich [31]. Using the results of [31], bosonization was extended
from two to three dimensions [32]. However, contrary to the two-dimensional case where
the fermionic determinant can be exactly computed, bosonization in higher dimensions is not
exact and, in the general case, it has a non-local structure. However, for the large mass limit
in the one-loop of perturbative evaluation, a local expression materializes. Indeed, there has
been established [32], to leading order in the inverse fermionic mass, an identity between the
partition functions for the three-dimensional Thirring model and the topologically massive
U(1) gauge theory, whose dynamics is controlled by a Maxwell–Chern–Simons action. Here
we show that the contribution next-to-leading order leads to the MCS–Podolsky model via
duality transformation.

Below we compute the low energy sector of a theory of massive self-interacting fermions,
the massive Thirring model in 2 + 1 dimensions, that can be bosonized into a gauge theory,
the Maxwell–Chern–Simons gauge theory and its possible higher derivative extensions. We
start from the fermionic partition function for the three-dimensional massive Thirring model,
following closely the spirit of [32],

ZTh =
∫

Dψ̄Dψ exp

(
−

∫ (
ψ̄ i(∂/ + M)ψi − g2

2N
jµjµ

)
d3x

)
(9)

with the coupling constant g2 having dimensions of inverse mass. Here ψi are N two-
component Dirac spinors and jµ is a global U(1) current defined as,

jµ = ψ̄ iγ µψi. (10)
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Note that we have reverted to the Euclidean metric in this subsection. As usual, we eliminate
the quartic interaction by performing a (functional) Legendre transformation through the
identity

exp

(∫
g2

2N
jµjµ d3x

)
=

∫
DAµ exp

(
−

∫ (
1

2
AµAµ +

g√
N

jµAµ

)
d3x

)
(11)

after a scaling Aµ → gAµ/
√

N . The partition function then becomes

ZTh =
∫

Dψ̄DψDAµ exp

(
−

∫ (
ψ̄ i

(
∂/ + M +

g√
N

A/

)
ψi +

1

2
AµAµ

)
d3x

)
. (12)

Formally, the fermionic path-integral gives the Dirac operator determinant,∫
Dψ̄Dψ exp

(
−

∫
ψ̄ i

(
∂/ + M +

g√
N

A/

)
ψi d3x

)
= det

(
∂/ + M +

g√
N

A/

)
. (13)

The determinant of the Dirac operator is an unbounded operator and requires regularization.
Bosonization will depend on the actual computation of this determinant, namely whether it
can be computed exactly in a closed form or an approximate recipe must be enforced. In
general it leads to non-local structures but, under some approximation scheme (such as the
inverse mass), a local result emerges.

This determinant can be computed exactly for D = 2, both for Abelian and non-Abelian
symmetries. For the D = 3 case this determinant has been computed in [31] as an expansion
in inverse powers of the fermion mass giving, in the leading order, the Chern–Simons parity
violating term, as well as the parity conserving Maxwell term, which is central to our discussion
here,

ln det

(
∂/ + M +

g√
N

A/

)
= ± ig2

16π

∫
εµναFµνAα d3x − g2

24πM

∫
d3x FµνFµν + O(∂2/M2).

(14)

We bring these results into the partition function to get

ZTh =
∫

DAµ e−Seff [Aµ] (15)

where Seff[Aµ] is given, up to order 1/m, by

Seff[Aµ] = 1

2

∫
d3x

(
AµAµ ∓ ig2

4π
εµανAµ∂αAν − g2

12πM
FµνFµν

)
(16)

after the scaling Aµ → mAµ, with m = 4π/g2. With these identifications we find a = 2m
3M

.
In conclusion, we have established the following identification:

ZTh ≈ ZMCS–Proca (17)

which is valid to next-to-leading order in 1/M .
In the preceding section we have established the dynamical equivalence between the

model defined by SMCS–Proca and the MCS–Podolsky theory. This proves the equivalence,
to this order in 1/M expansion, of the partition functions for the Thirring model and the
MCS–Podolsky theory:

ZTh ≈ ZMCS–Podolsky (18)

It expresses the equivalence between three-dimensional interacting fermionic theory and
Maxwell–Chern–Simons vectorial bosons in the long wavelength approximation. It is
interesting to observe that the Thirring coupling constant g2/N in the fermionic model is
mapped into the inverse mass spin 1 massive excitation. In the same fashion, we may
identify each term of the generalization with higher-order derivatives studied below, with
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terms following from the 1/M expansion of the fermionic determinant. This is however
beyond the scope of the present work.

3. Generalization to higher-order derivatives

In this section we use the duality procedure which connects the SD and MCS models, and
the MCS–Proca and MCS–Podolsky models, in order to extend the formalism to generalized
models involving higher-order derivatives. Evidently, the presence of higher-order derivatives
introduces longer distance effects and is of interest for string theory, and for investigations
involving phase transition. We split the subject into two subsections, the first exploring the
relevant classical issues, and the second dealing with duality at the quantum level.

3.1. Duality at the classical level

Let us rescale fields and coordinates as A → m1/2Ā and x → m−1x̄, in order to work with
dimensionless quantities. We rewrite Ā and x̄ as A and x again, and we define the general
field A(n)

µ through the recursive relation

A(n)µ ≡ εµνρ∂νA
(n−1)
ρ . (19)

Here we use A(0)
µ = Aµ to represent the basic field. The subscript n which identifies the field

also shows the number of derivatives one has to perform in the basic field. We note that in the
above relation (19) the field A(n)

µ is related to the field A(n−1)
µ by means of a derivative, which

maintains the mechanism we have identified in section 2, where the dual relation between the
fields involves a derivative.

For this field we now define the general field strength,

F (n)
µν ≡ ∂µA(n)

ν − ∂νA
(n)
µ . (20)

With this, the Maxwell term is proportional to A(1)
µ A(1)µ, and can be generalized to A(n)

µ A(n)µ.
We define the antisymmetric tensor G(n)

µν such that G(0)
µν = Fµν , and

G(n)
µν ≡ ∂[µ∂λG

(n−1)
λν] = ∂µ∂λG

(n−1)
λν − ∂ν∂

λG
(n−1)
λµ (21)

which is important to relate A(n)
µ to A(0)

µ . We note that G(n)
µν contains 2n + 1 implicit derivatives

in Aµ. So, the general field is, for n positive,

A(n)
µ =

{
(−1)

n
2 ∂νG

(n/2−1)
νµ for n even

1
2 (−1)

n−1
2 ενλ

µ G
(n/2−1/2)

νλ for n odd.
(22)

To include CS-like terms into the proposed generalization we first note that the CS term
can be written as εµνλAµ∂νAλ = A(0)

µ A(1)µ. Thus, it induces the general form, A(i)
µ A(j)µ,

where i, j are non-negative integers. We note that if i = j we obtain the generalized Maxwell
term. Thus, we can modify the generalized Maxwell model appropriately, to include extended
CS contributions. Furthermore, we can prove the identity

A(i)
µ A(j)µ = A(i−1)

µ A(j+1)µ + εµνλ∂µ

(
A(i−1)

ν A
(j)

λ

)
. (23)

The last term is a total derivative, which can be discarded since it does not change the action
when this identity is used in the Lagrange density of the corresponding model.

We see that for i + j even we can write, apart from a total derivative,

A(i)
µ A(j)µ = A

(
i+j

2 )
µ A

(
i+j
2 )

µ. (24)
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As a result, in the action we do not need to split A(i)
µ A(j)µ into generalized Maxwell and

extended CS terms. We introduce a single term, characterized by the sum i + j : for i + j even
we get a generalized Maxwell term, and for i + j odd we obtain an extended CS term. For
example, A(0)

µ A(1)µ and A(0)
µ A(2)µ reproduce the standard CS and Maxwell terms, respectively.

We use the above results to introduce the model

L(n) =
n∑

i=0

riA
(0)
µ A(i)µ (25)

where n is integer, and ri are real and dimensionless parameters, with r0 �= 0. The equation of
motion is

n∑
i=0

riA
(i)
µ = 0. (26)

This equation allows us to write ∂µA(0)
µ = 0, which shows that no longitudinal mode propagates

in the theory. Besides, we can use this condition to rewrite equation (22) in the simpler form

A(n)
µ =

{
(−1)

n
2 � n

2 A(0)
µ for n even

(−1)
n−1

2 � n−1
2 εµνλ∂

νA(0)λ for n odd.
(27)

With the aim to build an Abelian gauge model, we consider the variation δAµ = δA(0)
µ =

∂µ�; as before, � is a local infinitesimal parameter. We use this and the definition for A(n)
µ to

obtain

δA(i)
µ = 0 i �= 0. (28)

We vary the Lagrange density in (25) to obtain

δL(n) = KµδA(0)
µ (29)

where the local Noether current is defined as

Kµ ≡ 2
n∑

i=0

riA
(i)
µ . (30)

We introduce an auxiliary vector field aµ, and we couple it linearly to the Euler vector

L(n)
1 = L(n) − aµKµ. (31)

We chose δaµ = ∂µ� = δAµ. Thus

δL(n)
1 = −aµδKµ. (32)

We consider

L(n)
2 = L(n)

1 + r0a
µaµ. (33)

The procedure ends with the elimination of the auxiliary field aµ. We get to

L(n)
D = L(n) − 1

4r0
KµKµ (34)

which is the Lagrange density of the dual model. We use the Euler vector to get

L(n)
D =

n∑
i=0

riA
(0)
µ A(i)µ − 1

r0

n∑
i=0

n∑
j=0

rirjA
(i)
µ A(j)µ (35)

or better

L(n)
D = − 1

r0

n∑
i=1

n∑
j=0

rirjA
(i)
µ A(j)µ (36)
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which gives the dual model. We note that the respective action is gauge-invariant. This result
shows that the model (25) engenders hidden gauge invariance, in a way similar to the SD
model [7]. We can rewrite this result in the form

LD =
2n∑
i=1

r ′
iA

(0)
µ A(i)µ (37)

where we have used

r ′
i =

{− 1
r0

∑i
l=1 rlri−l for 1 � i � n

− 1
r0

∑n
l=i−n rlri−l for n < i � 2n.

(38)

Before ending this section, let us comment on issues related to the above duality
investigation. The equation of motion that follows from the dual model (37) is

2n∑
i=1

r ′
iA

(i)
µ = 0. (39)

In equation (26) we eliminate A(0)
µ to see that these two equations are identical, thus confirming

the dual equivalence between the two theories.
Another issue concerns finding a master theory. To get to this, let us introduce another

field B(i)
µ such that B(0)

µ = Bµ. We use A(i)
µ and B(i)

µ to write

L(n)
M = r0B

(0)
µ B(0)µ + 2

n∑
i=1

riB
(0)
µ A(i)µ −

n∑
i=1

riA
(0)
µ A(i)µ. (40)

We vary the corresponding action with respect to B(0) to get

B(0) = − 1

r0

n∑
i=1

riA
(i)µ. (41)

We use this in (40) to obtain

L(n)
D = − 1

r0

n∑
i=1

n∑
j=0

rirjA
(i)
µ A(j)µ (42)

which is equation (36). If we vary the master action with respect to A(0)
µ to get

n∑
i=1

riB
(i)
µ =

n∑
i=1

riA
(i)
µ . (43)

This result allows us to write

L = r0B
(0)
µ B(0)µ +

n∑
i=1

riB
(0)
µ B(i)µ =

n∑
i=0

riB
(0)
µ B(i)µ (44)

which reproduces equation (25), confirming that equation (40) is a master or parent theory.
The model that we have introduced is defined by equation (25); it is controlled by the

integer n which we choose to be n = 1, 2, 3, . . . . The simplest case is n = 1, which reproduces
the SD model. The next case is n = 2, which gives the MCS–Proca model investigated in
section 2. The case n = 3 gives

L(3) = r0A
(0)
µ A(0)µ + r1A

(0)
µ A(1)µ + r2A

(0)
µ A(2)µ + r3A

(0)
µ A(3)µ

= r0AµAµ + r1ε
µνλAµ∂νAλ + 1

2 r2FµνF
µν + r3ε

µνλAµ∂ν∂
ρFλρ (45)
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and the other cases follow in standard fashion. For n = 3 the dual model is

L(3)
D = − 1

r0

3∑
i=1

3∑
j=0

rirjA
(i)
µ A(j)µ. (46)

We use equations (21) and (22) to write

L(3)
D = − r1

2
εµνλAµFνλ − 1

2

(
r2 +

r2
1

r0

)
FµνF

µν

+
1

2

(
r3 + 2

r1r2

r0

)
εµνλFµν∂

ρFρλ − 1

r0

(
r2

2 + 2r1r3
)
∂µFµν∂λFλν

− 2
r2r3

r0
εµνλ∂ρFρµ∂ν∂

αFαλ − 2
r2

3

r0
∂µ∂νFνλ∂µ∂ρF

ρλ. (47)

In this example, we can choose the parameters r0 �= 0, r1, r2, r3 to find the dual theory to every
model, up to the order n = 3. For instance, if we use r0 = 1/2, r1 = −1/2, r2 = −a/2, and
r3 = 0, and if we re-introduce dimensional units, we obtain from (45) and (47) expressions
(1) and (8) that we have investigated in section 2.

We note that the presence of the CS and CS-like terms imposes the restriction that the
Minkowski space must have (2, 1) spacetime dimensions. Thus, if we set ri = 0 for i odd,
we eliminate all the CS and CS-like terms, and our results are then valid in arbitrary (d, 1)

spacetime dimensions.

3.2. Quantum duality

We now explore the issue of quantum duality [33–35] for the models examined previously.
We start with the Lagrange density for the master theory, given by equation (40). We extend
the model to write

L(n)
M (J, j) = r0B

(0)
µ B(0)µ + 2B(0)

µ Fµ(A) − A(0)
µ Fµ(A) + αr0B

(0)
µ j (0)µ + αFµ(A)J (0)µ (48)

where we have set

Fµ(A) =
n∑

i=1

riA
(i)
µ (49)

Fµ(B) =
n∑

i=1

riB
(i)
µ (50)

to ease calculation. We see that the master theory contains two fields, thus we have added
the external currents jµ and Jµ; we see that jµ couples with Bµ, while Jµ couples with Aµ

indirectly, through Fµ(A).
We use (48) to eliminate Aµ. We obtain Fµ(A) = Fµ(B) + (α/2)Fµ(J ), which we use

to write

L(n)(J, j) = L(n) + αB(0)
µ (r0j

(0)µ + Fµ(J )) +
α2

4
J (0)

µ Fµ(J ) (51)

where L(n) is the model given by equation (25). We also use (48) to eliminate B(0)
µ . We get

B(0)
µ = −(1/r0)F

(0)
µ (A) − (α/2)j (0)

µ , which we use to obtain

L(n)
D (J, j) = L(n)

D + αFµ(A)(J (0)µ − j (0)µ) − α2r0

4
jµjµ (52)

where L(n)
D is the dual model, given by equation (36).
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We define the functional generators Z
(n)
M (J, j), Z(n)(J, j) and Z

(n)
D (J, j) in the usual way.

They allow us to obtain

1

Z
(n)
M

δ2Z
(n)
M

δjµ(x)δjν(y)

∣∣∣∣
j,J=0

= 1

Z(n)

δ2Z(n)

δjµ(x)δjν(y)

∣∣∣∣
j,J=0

= −α2r2
0 〈B(0)µ(x)B(0)ν(y)〉 (53)

and

1

Z
(n)
M

δ2Z
(n)
M

δJµ(x)δJν(y)

∣∣∣∣
j,J=0

= 1

Z
(n)
D

δ2Z
(n)
D

δJµ(x)δJν(y)

∣∣∣∣
j,J=0

= −α2〈Fµ(A)(x)F ν(A)(x)〉D. (54)

The master theory allows us to write

1

Z
(n)
M

δ2Z
(n)
M

δjµ(x)δjν(y)

∣∣∣∣
j,J=0

= 1

Z
(n)
D

δ2Z
(n)
D

δjµ(x)δjν(y)

∣∣∣∣
j,J=0

= −α2〈Fµ(A)(x)F ν(A)(y)〉D − i
α2r0

2
δµνδ(x − y) (55)

and

1

Z
(n)
M

δ2Z
(n)
M

δJµ(x)δJν(y)

∣∣∣∣
j,J=0

= 1

Z(n)

δ2Z(n)

δJµ(x)δJν(y)

∣∣∣∣
j,J=0

= − α2〈Fµ(B)(x)F ν(B)(y)〉 + i
α2

2
Oµνδ(x − y) (56)

where the operator Oµν is defined according to

Fµ(A) = OµνA(0)
ν . (57)

We use these results to write〈
B(0)

µ (x)B(0)
ν (y)

〉 = 〈Fµ(A)(x)Fν(A)(y)〉D + i
r0

2
δµνδ(x − y) (58)

and

〈Fµ(B)(x)F ν(B)(y)〉 − i
1

2
Oµνδ(x − y) = 〈Fµ(A)(x)F ν(A)(y)〉D. (59)

Expressions (58) and (59) show that the corresponding Green functions are equivalent,
apart from contact terms. They show that the duality that we have presented in section 3.1
above is preserved at the quantum level.

We now examine the specific case considered in section 2, which involves duality between
the MCS–Proca theory (1) and the generalized MCS–Podolsky model (8). In this case the
results (58) and (59) become

〈Bµ(x)Bν(y)〉 = 〈Fµ(A)(x)Fν(A)(y)〉D + i
m2

4
δµνδ(x − y) (60)

and

〈Fµ(B)(x)Fν(B)(y)〉 − i

2

(
−m

2
εµνλ∂

λ +
a

2
δµν� − a

2
∂µ∂ν

)
δ(x − y)

= 〈Fµ(A)(x)Fν(A)(y)〉D (61)

where we have re-inserted the parameters used in section 2. We see that for a = 0 one recovers
the result of [34], which deals with quantum duality for the CS and MCS models.
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4. The case n → ∞
The success of the former investigations has led us to think of extending the case containing
a finite number of terms to the case where an infinity sequence of terms is considered.
Our interest relies on the case where the infinite sequence of terms adds to give elementary
functions. We see that the form of L(n) in (25) suggests this particular generalization, to the
case where n → ∞. Such a generalization can be written in terms of a smooth function,
depending on the specific values of the real parameters ri that we have introduced to define
the model. We further explore this possibility introducing the model

L = Aµ[F(O)]µν Aν (62)

where F is a smooth function, and O is the operator

Oµν ≡ −εµνλ∂λ. (63)

The model is defined in terms of the expansion of the smooth function, in the form

L = Aµ

∞∑
n=0

Cn[On]µν Aν (64)

where Cn are given by

Cn = 1

n!

dnF (x)

dxn

∣∣∣
x=0

(65)

and [O0]µν = δµ
ν , [O1]µν = −ε

µ
νλ∂

λ and [O2]µν = [O1]µλ [O1]λν , and so forth. We require that
F(0) �= 0, which implies that C0 �= 0. This means that the above model starts with the
Proca-like term AµAµ, which prevents the presence of gauge invariance. Thus, we use the
gauge embedding procedure to obtain the dual model. It has the form

LD = Aµ

∞∑
n=0

Cn[On]µν Aν − 1

C0
Aµ

∞∑
n=0

∞∑
m=0

CnCm[On+m]µν Aν (66)

or, formally,

LD = Aµ

[
F(O) − 1

F(0)
[F(O)]2

]µ

ν

Aν. (67)

We illustrate this general result with the example

L = Aµ

(
1

1 + O

)µ

ν

Aν. (68)

In this case the dual theory reads

LD = Aµ

(
O

(1 + O)2

)µ

ν

Aν. (69)

5. Adding fermions

The study of fermions is motivated by the possibility of extending the present duality procedure
to more realistic models, which should necessarily contain fermionic matter fields to describe
the matter content of any realistic model.

We add fermions with the modification

L̃(n) = L(n) + LI + Lf (70)
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where

Lf = ψ̄(i/∂ − M)ψ (71)

describes free fermions, with M being the dimensionless fermion mass parameter. To identify
how the fermionic field interacts with the fields A(n)

µ we introduce the non-minimal coupling

∂µ → Dµ = ∂µ + i
n∑

i=0

eiA
(i)
µ (72)

where ei are (dimensionless) coupling constants—we note that the condition ei = 0, i �= 0
leads to minimal coupling with the fermionic matter. With the above generic coupling, the
interaction terms in LI are given by

LI = −
n∑

i=0

eiA
(0)µJ (i)

µ (73)

where we have defined the general current

J (i)
µ ≡ εµνλ∂

νJ (i−1)λ (74)

with

J (0)
µ ≡ jµ = ψ̄γµψ. (75)

To write the above expressions we have used the identity

A(i)
µ J (j)µ = A(i−1)

µ J (j+1)µ + εµνλ∂µ

[
A(i−1)

ν J
(j)

λ

]
. (76)

We now search for the dual theory. The procedure follows as in the former case. The
Euler vector is modified by the presence of interactions; it changes to

K̃µ = Kµ −
n∑

i=0

eiJ
(i)
µ . (77)

We introduce an auxiliary field ãµ, and we impose that δãµ = δA(0)
µ = δ�. The

Lagrange density varies according to δL(1) = −ãµδK̃
µ

, since δJ (n)
µ = 0, as one can verify

straightforwardly. As in the former case, the procedure requires another iteration. The final
result is

L̃(n)

D = L̃(n) − 1

4r0
K̃

µ
K̃µ (78)

or, explicitly,

L̃(n)

D = −
2n∑
i=1

(
r ′
iA

(0)
µ A(i)µ − s ′

iA
(0)
µ J (i)µ

) − 1

4

2n∑
i=0

e′
iJ

(0)
µ J (i)µ + Lf (79)

where we have set

s ′
i =

{− 1
r0

∑i
l=1 rlei−l for 1 � i � n

− 1
r0

∑n
l=i−n rlei−l for n < i � 2n

(80)

and

e′
i =

{
1
r0

∑i
l=0 elei−l for 0 � i � n

1
r0

∑n
l=i−n elei−l for n < i � 2n.

(81)

In this result, we note the presence of Thirring-like interactions [36], which are
fundamental to maintain the contents of the fermionic sector unchanged [35]. To see this



Dual equivalence in models with higher-order derivatives 9955

we examine the dynamics of the fermionic sectors in both theories. The fermionic equation
of motion for the first theory is

(i/∂ − M)ψ =
n∑

i=0

eiA
(i)
µ γ µψ. (82)

To eliminate the gauge field, we note that

n∑
i=0

riA
(i)
µ = 1

2

n∑
i=0

eiJ
(i)
µ . (83)

We restrict the coupling constants to obey ei = αri to get

(i/∂ − M)ψ = 1

2
α

n∑
i=0

eiJ
(i)
µ γ µψ. (84)

Analogously, the fermionic equation for the dual theory is given by

(i/∂ − M)ψ =
2n∑
i=1

s ′
iA

(i)
µ γ µψ +

1

2

2n∑
i=1

e′
iJ

(i)
µ γ µψ. (85)

We find the equation of motion for the gauge field in the dual model as

2n∑
i=1

r ′
iA

(i)
µ = 1

2
α

2n∑
i=1

s ′
iJ

(i)
µ . (86)

The restriction ei = αri implies that s ′
i = αr ′

i , and so we can write

(i/∂ − M)ψ = 1

2
α

n∑
i=0

eiJ
(i)
µ γ µψ (87)

which is equation (84). This result shows that the fermionic sector does not change when one
goes from (70) to the dual theory (79).

We can also add fermions in the case n → ∞. To illustrate this possibility we consider
the model

L̃ = Aµ[F(O)]µν Aν − Aµ[G(O)]µν J ν + Lf (88)

where G is a smooth function similar to F. We use the gauge embedding procedure to obtain
the dual model

L̃D = Aµ

[
F(O) − 1

F(0)
F 2(O)

]µ

ν

Aν − Aµ

[
G(O) − 1

F(0)
F (O)G(O)

]µ

ν

J ν

− 1

4
Jµ

[
1

F(0)
G2(O)

]µ

ν

J ν + Lf . (89)

We note the presence of the generalized Thirring-like term in the dual theory.

6. Nonlinear interactions

We now return to the Born–Infeld [2] generalization, which is different from the Proca and
Podolsky generalizations. The main ingredient now is nonlinearity, and so we further explore
the duality procedure introduced above mixing higher-order derivatives and nonlinearity.
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Evidently, there are several different possibilities of including nonlinearity in the model
introduced in section 3, but here we consider the case

L(n)
NL = g

(
A(0)

µ A(0)µ
)

+
n∑

i=1

riA
(0)
µ A(i)µ (90)

where g(x) is nonlinear in x = A(0)
µ A(0)µ. This case does not include nonlinear interactions

that involve derivatives of the basic field Aµ = A(0)
µ . The equation of motion is

A(0)
µ = − 1

g′(x)

n∑
i=1

riA
(i)
µ (91)

where g′(x) = dg/dx. This equation allows us to write

∂µA(0)
µ = −

n∑
i=1

riA
(i)
µ ∂µ

(
1

g′(x)

)
(92)

which shows that there are longitudinal modes propagating, due to the presence of the nonlinear
interaction. We note that in the linear case [g(x) = x] we have g′ = 1, which leaves no room
for propagation of longitudinal modes.

We treat the presence of nonlinearity invoking the trick used in [28], and then further
explored in [29, 37]. The key point here is to remove the nonlinearity at the expense of
introducing another field, an auxiliary scalar field φ. We implement this possibility with the
change

g
(
A(0)

µ A(0)µ
) → f (φ) +

1

φ
A(0)

µ A(0)µ. (93)

We follow [37] to show that

f (φ) =
∫ φ

dχ
1

χ2
g′−1

(
1

χ

)
. (94)

The model is modified to

L(n)
φ = f (φ) +

1

φ
A(0)

µ A(0)µ +
n∑

i=1

riA
(0)
µ A(i)µ. (95)

In this case the Euler vector is given by

Kµ = 2

φ
A(0)

µ + 2
n∑

i=1

riA
(i)
µ . (96)

The gauge embedding method allows us to write

L(n)
D = L(n)

φ − 1
4φKµKµ (97)

and so

L(n)
D = f (φ) −

n∑
i=1

riA
(0)
µ A(i)µ − φ

2n∑
i=2

r̃iA
(0)
µ A(i)µ (98)

where r̃i is given by

r̃i =
{∑i−1

l=1 rlri−l for 2 � i � n∑n
l=i−n rlri−l for n < i � 2n.

(99)
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We note that in (98) the nonlinear behaviour involves all the terms, except for the Chern–
Simons one. This fact is clearer when we eliminate the auxiliary field φ from the model,
which is formally given by

φ = f ′−1

(
2n∑
i=2

r̃iA
(0)
µ A(i)µ

)
. (100)

We illustrate the above investigations with the model

L(n)
BI = β2

√
1 +

2r0

β2
A

(0)
µ A(0)µ +

n∑
i=1

riA
(0)
µ A(i)µ (101)

where the nonlinear contribution is of Born–Infeld type. We note that the limit β → ∞
restores the original model (25). In this case, the function f (φ) given by equation (94) has
the form

f (φ) = 1

2
β2

(
r0φ +

1

r0φ

)
. (102)

We use equation (100) to obtain

φ = 1

r0

/√√√√1 − 2

r0β2

2n∑
i=2

r̃iA
(0)
µ A(i)µ . (103)

The gauge embedding procedure given above allows us to write

L(n)
BID = β2

√√√√1 − 2

r0β2

2n∑
i=2

r̃iA
(0)
µ A(i)µ −

n∑
i=1

riA
(0)
µ A(i)µ. (104)

We see that in the limit β → ∞ the above result leads to (37), the dual of the model (25),
as expected. We also note that in the case n = 1 the model (101) reproduces the Born–
Infeld–Chern–Simons model investigated in [28], and this shows that the model (101) is a
generalization of the model investigated in [28].

7. Comments and conclusions

In the present work we have investigated duality symmetry in generalized field theory models,
involving higher-order derivatives of the basic field Aµ = A(0)

µ through the recursive relation

A(n)
µ = ενλ

µ ∂νA
(n−1)
λ . The investigations started in section 2 and in section 3, and there we have

generalized the self-dual model to include several higher-order derivative terms, and we have
obtained the dual theory. We have also proposed a master model, from which one gets both
the model and its dual partner. In this generalization, the presence of the CS and CS-like terms
imposes the restriction that the Minkowski space has (2, 1) spacetime dimensions. However,
we can eliminate all the CS and CS-like terms with the restriction ri = 0 for i odd; in this
case our results are valid in arbitrary (d, 1) spacetime dimensions. In section 3 we have also
examined the implications of duality at the quantum level. These results are obtained for Ln,
for n integer, finite, and in section 4 we have further extended our results, considering the limit
n → ∞, which leads to the case involving non-polynomial functions.

Later, in section 5 we have added fermions to the system, and there we have included
fermions in models involving A(n)

µ , in the case where n is finite, and also for n → ∞. In
section 6 we have investigated the more general case, where nonlinear contributions involving
the basic field A(0)

µ are present. As we have shown, in this case we first circumvent nonlinearity
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at the expense of introducing an auxiliary field, and then we proceed as before, to get to the
dual model. After getting to the dual model, we then eliminate the auxiliary field to obtain the
dual model in terms of the original field A(0)

µ and the accompanying derivatives.
We note that all the generalizations we have investigated involve the Abelian vector field

Aµ. Thus, a natural and direct issue concerns the use of non-Abelian fields, and their possible
generalizations, along the lines of the non-Abelian SD model, and the Yang–Mills–Chern–
Simons model [26]. Also, it is of interest to investigate if the presence of bosonic matter
changes the duality scenario that we have presented in section 5. Another point concerns
duality in models of the B ∧ F type, and their extensions to include higher-order derivatives.
These and other related issues are under consideration, and we hope to report on them in the
near future. Another point concerns models which include fermions. As one knows, if there is
no fermionic self-interaction, and if one integrates on the fermions, the remaining action will
necessarily contain higher-order derivative terms, thus giving another compelling motivation
to investigate models involving higher-order derivatives. We hope to report on these and other
related issues in another work.

Acknowledgments

We would like to thank CAPES, CNPq, PROCAD and PRONEX for partial support.

References

[1] Alvarez-Gaume L and Zamora F 1997 Duality in quantum field theory and string theory Nashville Fundamental
Particles and Interactions pp 46–83 (Preprint hep-th/9709180)

[2] Bohr M and Infeld L 1934 Proc. R. Soc. A 144 425
[3] Proca A 1936 J. Phys. Rad. 7 347
[4] Podolsky B 1942 Phys. Rev. 62 68
[5] Deser S and Jackiw R 1999 Phys. Lett. B 451 73
[6] de Souza Dutra A and Natividade C P 1999 Phys. Rev. D 61 027701
[7] Deser S, Jackiw R and Templeton S 1982 Phys. Rev. Lett. 48 975

Deser S, Jackiw R and Templeton S 1982 Ann. Phys., NY 140 372
[8] Townsend P K, Pilch K and van Nieuwenhuizen P 1984 Phys. Lett. B 136 32

Townsend P K, Pilch K and van Nieuwenhuizen P 1984 Phys. Lett. B 137 443(E)
[9] Deser S and Jackiw R 1984 Phys. Lett. B 139 371

[10] Witten E 1986 Nucl. Phys. B 268 253
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